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Abstract

We study a simple exchange model in which price is fixed and the amount

of a good transferred between actors depends only on the actors’ respective

budgets and the existence of a link between transacting actors. The model

induces a simply-connected but possibly multi-component bipartite graph.

A trading session on a fixed graph consists of a sequence of exchanges be-

tween connected buyers and sellers until no more exchanges are possible. We

deem a trading session “feasible” if all of the buyers satisfy their respective

demands. If all trading sessions are feasible the graph is deemed “success-

ful”, otherwise the feasibility of a trading session depends on the order of

the sequence of exchanges. We demonstrate that topology is important for

the success of trading sessions on graphs. In particular, for the case that

supply equals demand for each component of the graph, we prove that the
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graph is successful if and only if the graph consists of components each of

which are complete bipartite. For the case that supply exceeds demand, we

prove that the other topologies also can be made successful but with finite

reserve (i.e., excess supply) requirements that may grow by as much as the

number of buyers. Finally, with computations for a small instance of the

model, we provide an example of the wide range of performance in which

only the connectivity varies. These results taken together place limits on

the improvements in performance that can be expected from proposals to

increase the connectivity of sparse exchange networks.

1. Introduction

Networked infrastructures are designed to efficiently deliver goods be-

tween actors; furthermore, they are designed to continue functioning even if

some components of the network fail. In most such infrastructures, suppliers

maintain a reserve against a range of likely demand scenarios. One class of

strategies to reduce such reserve requirements, and central to Smart Grid[1, 2]

proposals, for example, employ a dramatic increase in the connectivity of the

network and the exchanges that take place on them[3]. On the other hand,

an increase in network connectivity may under some circumstances degrade

rather than improve network performance, as illustrated by, e.g., the venera-

ble Braess paradox and its variations[4, 5, 6, 7, 8, 9, 10]. Therefore we want

to assess the impact of those proposed upgrades to networked infrastructures

that increase its connectivity between actors. As a first step we study a

simple model of exchanges between non-cooperative actors. In particular,

we will show that it is easy to generate Braess-like paradoxes wherein the
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ability to meet all demands is degraded by nothing more than increasing the

number of links.

2. Description of the Exchange Model

2.1. Trading between a buyer and a seller

First we consider an unsupervised bilateral trade between a buyer b with

demand Db and a seller s with supply Ss; alternatively we may consider

the exchange of two goods with “supply” as one good and “demand” as the

other good. We assume that the trade exchanges supply for demand at a

fixed unit exchange rate (price). The roles of seller and buyer are fixed, e.g.,

buyers do not become sellers. We signify the access of buyers to sellers with

a link between the two actors. Trading is not optional; a trade between a

buyer and seller must occur when (a) there exists a link between the buyer

and the seller (b) the buyer has positive demand (c) the seller has positive

supply. The amount traded is the maximum that can be traded given the

available supply and demand (but see the end of 3.1 where we relax this

requirement). Therefore at least one actor’s supply or demand is always

reduced to zero, i.e., if the buyer with demand Db = δ trades with seller

with supply Ss = σ, the result of the trade will be that the buyer is left with

max(0, δ − σ) and the seller is left with max(0, σ − δ) (e.g., see Figure 1).

This simple budget-constrained exchange model[11, 12] deviates from both

other exchange models[13, 14] and standard assumptions of economics[15]

because we abandoned the classical concept of bi-modal traders by instead

fixing an agent as either a buyer or a seller and we imposed a more restrictive

specification of trading preferences; see [12] for a full discussion).
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2.2. Trading between many buyers and sellers

The exchange model[11] employed here then consists of a fixed set of Nb

buyers (with total demand D) and Ns sellers (with total supply S). Through-

out we will assume S = D. The L links between buyers and sellers induce a

bipartite graph (see Figure 2); e.g., the case in which all buyers are accessible

to all sellers is the complete bipartite graph KNb,Ns .

We define a trading session:

Definition 1. A trading session on the graph consists of one of the (up to

L!) possible sequences of all possible trades on the graph of L links.

Because each link trades at most once, it may happen that a trade never

occurs over a link because a buyer or seller has been depleted by trades on

other links. It may therefore happen that a demand remains unmet at the

end of the trading session. Therefore we define “feasible” and “successful”

as follows:

Definition 2. A trading session is feasible if it reduces all demands to zero,

otherwise it is infeasible.

Definition 3. A graph is successful if all possible trading sessions are feasi-

ble.

2.3. Statement of the problem

The complete bipartite graph KNb,Ns is apparently successful according

to Def. 3 if supply equals demand. On the other hand, inspection of Figure

2 shows that there is also a minimally connected multi-component bipartite

graph that is successful. We ask, given a set of initial demands and initial
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supplies, which graphs are successful? We suspect that for some graphs there

would be some orderings of the exchanges in which at least one demand would

not be met at the end of the session: indeed we show in the next section that

it is necessary and sufficient for each component (for which, within that

component, supply equals demand) to be complete bipartite in order to be

successful.

3. Results

3.1. Statement and Proof of the Theorem

Here we characterize the topology of successful (order-independent) graphs.

First we state and prove a useful lemma. Then we state and prove the main

theorem.

Lemma 1. If the removal of the endpoints of a link in a bipartite component

separates the component into multiple components that are complete bipartite,

there exists a link in the component with endpoints that do not separate the

component into multiple components.

Proof. Consider a link l in a bipartite component with endpoints whose re-

moval separates the component into multiple components that are complete

bipartite. If any of the resulting components are single links, any one of

them would be a link with endpoints that do not separate the component

into multiple components. If no components are single links, any link that

does not contain the only connections to l for its component would be a link

with endpoints that do not separate the component into multiple compo-

nents.
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Theorem 1. Given that supply equals demand, the demands are reduced to

zero at the end of every trading session iff each component (for which, within

that component, supply equals demand) is complete bipartite.

Sufficiency. Assume for contradiction that a demand may not be reduced

to zero at the end of a trading session when each component is complete

bipartite and supply equals demand within each component. We construct

an example of this. In our example, each component is complete bipartite,

supply equals demand within each component, and a demand Db in compo-

nent C is not met at the end of a session. However, this is impossible. If

some demand remains in C, some supply remains in C. Since C is complete

bipartite, there exists a link between the buyer b with unmet demand and

a seller with remaining supply. Therefore, a trade can occur. This contra-

dicts that the trading session has ended. Therefore, when each component

is complete bipartite and supply equals demand within each component, the

demands are reduced to zero at the end of every trading session.

Necessity. Without loss of generality, we prove necessity for a component C

by strong induction. Obviously, supply must equal demand within a com-

ponent. Let CNb,Ns be a bipartite component with Nb buyers and Ns sellers.

Let GNb,Ns be a bipartite graph with Nb buyers and Ns sellers.

Base case Consider a configuration with a single buyer b and a single seller

s connected by a link l and Ss equals Db. If we remove l, the resulting

configuration cannot be successful. Therefore, G1,1 must be K1,1 for

the demand of b to be reduced to zero at the end of the trading session.

Induction hypothesis Assume for all Nb < m and Ns ≤ n or Nb ≤ m and
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Ns < n, that CNb,Ns must be KNb,Ns and supply must equal demand

for CNb,Ns to be successful.

Inductive step Consider a component Cm,n with L links and at least one

link between some buyer b and some seller s such that the removal of

the actor or actors that can no longer participate after a first trade

between b and s does not result in multiple components. The existance

of such a link is guaranteed by Lemma 1 and the induction hypothesis

if Cm,n is successful. Consider a first trade between b and s. After this

first trade, either Db or Ss has been reduced to zero. In any case, we can

remove the actor or actors that can no longer participate. According to

the induction hypothesis, the remaining component must be complete

bipartite to be successful. Now restore the actor or actors and undo

the first trade. There are three cases.

1. Only Db was reduced to zero by the first trade. Consider b’s links

to sellers. If b does not have links to all sellers, sequencing trades

so that the sellers to which b is linked are reduced as much as

possible by buyers other than b would leave b’s demand unmet at

the end of the session. This is possible because the component

without b is complete bipartite, all supplies are greater than zero,

and supply equals demand. Therefore b must have links to all

sellers in order to have its demand reduced to zero at the end of

every trading session.

2. Only Ss was reduced to zero by the first trade. Consider s’s links

to buyers. If s does not have links to all buyers, sequencing trades

so that the buyers to which s is linked are reduced as much as
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possible by sellers other than s would leave at least some of s’s

supply isolated at the end of the session, and at least one buyer

does not have its demand reduced to zero. This is possible because

the component without s is complete bipartite, all demands are

greater than zero, and supply equals demand. Therefore s must

have links to all buyers in order to have all demand reduced to

zero at the end of every trading session.

3. Db = Ss. One of b or s must have degree at least two or they

would be a separate component. Consider the one with lower

degree. Pick randomly in case of a tie. There are two cases.

b is picked If b does not have links to all sellers, sequencing

trades so that the sellers to which b is linked are reduced

as much as possible by buyers other than b would leave b’s

demand unmet at the end of the session. This is possible

because Db = Ss, s has degree at least two, the component

without b and s is complete bipartite, all supplies are greater

than zero, and supply equals demand. Therefore b must have

links to all supplies in order to have its demand reduced to

zero at the end of every trading session. Now consider s’s

links to buyers as in Case 2 above.

s is picked If s does not have links to all buyers, sequencing

trades so that the buyers to which s is linked are reduced

as much as possible by sellers other than s would leave at

least some of s’s supply isolated at the end of the session,

and at least one buyer does not have its demand reduced to
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zero. This is possible because Db = Ss, b has degree at least

two, the component without b and s is complete bipartite, all

demands are greater than zero, and supply equals demand.

Therefore s must have links to all buyers in order to have all

demand reduced to zero at the end of every trading session.

Now consider b’s links to sellers as in Case 1 above.

Therefore, both b and s must have links to all sellers and buyers,

respectively, in order to have all demand reduced to zero at the

end of every trading session.

Therefore Gm,n must be Km,n in order to have all demand reduced to

zero at the end of every trading session.

If we relax the requirement that the amount traded is the maximum that

can be traded given the available supply and demand, the theorem would

still hold because a trading session could still use that maximum amount or

combine successive trades to give the same result.

3.2. Enumeration

Here we study a special case (see Figure 2) in order to directly enumerate

the outcome of trading sessions. The graph in Figure 2 satisfies the conditions

of Theorem 1. All subsequent graphs considered here have the backbone of

the original four links shown in Figure 2. We generate a new graph by adding

1 ≤ k ≤ 5 links in every possible way to the original graph. For each k there

are
(

8
k

)
graphs with L = k + 4 links, each with L! different trading sessions.
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We calculate the results of each trading session for each graph in order to

calculate the fraction of infeasible trading sessions (Def. 2) and the maximum

demand left by infeasible sessions. The results are displayed in the top and

bottom panels, respectively, of Figure 3. Of course we ensured in advance for

this example that each component has total supply equal to total demand

so that no configurations were trivially infeasible. The addition of even one

link to the graph of Figure 2 is enough to generate a substantial number

of trading sessions that cannot reduce the demands to zero. Indeed none

of the eight graphs with one extra link is successful. One of the 28 graphs

with two links added (corresponding to K2,1 ∪ K2,2) is successful but the

median fraction of infeasible trading sessions on all 28 graphs is higher than

the case of one link. The least successful graphs are those with four extra

links. Subsequently, adding links improves the situation (L = 9); finally, the

case of L = 12 (corresponding to K4,3) is always successful.

The median maximum demand left over in unsuccessful graphs (with

S = D)in the numerical experiments is 25− 30% of the initial demand. The

maximum demand left over can actually be arbitrarily close to 100% of the

initial demand as demonstrated by the lower bound in Section 3.3. This

translates into large reserves that would be required by the sellers in order

to meet demands on such graphs.

3.3. Statement and Proof of a Reserve Lower Bound

Here we characterize the reserves that would be required by sellers in

order to meet demands on unsuccessful graphs in the worst case.

Theorem 2. The reserves that would be required by sellers in order to meet
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demands on unsuccessful graphs can be proportional to Nb, the number of

buyers.

Proof. Consider a successful graph consisting of Nb buyers and Ns = Nb

sellers. Each buyer has demand D and each supplier has supply S = D.

Each seller si is connected to a buyer bi. Now create an unsuccessful graph

by adding links between seller s1 and buyers b2, b3, b4, ..., bNb
. The supply

for s1 would have to be increased to Nb ∗ D in order for this graph to be

successful.

3.4. Computing the Maximum Reserve Requirement

Here we give a nonlinear program to calculate the maximum demand left

unmet in an unsuccessful graph. Let lij equal one if the link between bi and

sj exists and zero otherwise. Then let tij ≥ 0 be the amount transacted over

lij. If ui ≥ 0 is the unmet demand at bi, the maximum unmet demand can

be computed by the nonlinear program in Figure 4. Note that the addition

of reserves can result in the need for still more reserves as demonstrated in

the lower bound in Section 3.3.

By removing the objective and constraints that contain ui and changing

the inequality ∑
j

tij ≤ Di,∀i

to the equality ∑
j

tij = Di,∀i

, the nonlinear program in Figure 4 becomes the linear program in Figure 5

which can be used to determine whether a graph is feasible.
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4. Conclusions

For this simple exchange model on a bipartite graph representing transac-

tions between Nb buyers and Ns sellers, we have shown that the sellers, with

supply equal to demand, can satisfy demand for any sequence of transactions

meet if and only if each component is complete bipartite. For a network of

many small components, this requirement is not especially demanding. On

the other hand, if the network is for some other reason required to consist of

only one component, then there would exist some sequence of transactions

for which sellers could not meet demand unless all NbNs links were created

or unless the initial supply had been supplemented by reserves.

We have a nonlinear program (Figure 4) to calculate the maximum de-

mand left over in an unsuccessful graph. Nevertheless, the addition of re-

serves can result in the need for still more reserves as demonstrated in the

lower bound in Section 3.3.

We have not been concerned here with the question here of how links

arise in the first place, i.e., what drives more vs. less links besides the mini-

mal requirement to allow an exchange between a buyer and a seller. In the

context of markets, the formation of the links in the first place would seem

to require a model (e.g., [13]) in which prices are discovered, e.g., through

auctions or brokers, which (as discussed in more detail in [12]) are left out of

this model. In some contexts[16], increasing the number of links might lower

the price of exchanges for some actors, or, policies such as the SmartGrid[1],

might for other reasons require many links. If the only penalty for adding

links were the one-time cost of installing the links themselves, it would be

unsurprising that the benefits of additional connectivity would, in time, out-
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weigh its expense. Nevertheless our results provide another potential penalty

for additional links between buyers and sellers that should be included in the

cost-benefit calculation.

While we expect that most proposals to reduce reserve requirements

would plan more than merely increased network connectivity, we have focused

this study of the simple case in which only the connectivity has increased.

Therefore we don’t expect to apply these results directly to any particular

proposal but instead expect these results to be only a part of a systematic

evaluation of such proposals. Nevertheless, our results suggest that the mere

increase in connectivity of a sparse exchange network will be problematic

unless the details of the topology are considered explicitly. In particular, as

both theory and computations suggest, there is a range of connectivity in

these networks that impose reserve requirements that might cancel out the

advantages that more links would otherwise provide.
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Figure 1: An example of an exchange before (top) and after (bottom) the trade. Note
that no further exchange is allowed on this link.

Figure 2: An example of a exchange network at the beginning of a trading session. In this
example, the demand will be met regardless of the order in which exchanges (specified by
the links) occur.
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Figure 3: Boxplots for results of the numerical evaluation of the fraction of infeasible
orderings (top) and maximum unfilled demand (bottom) as a function of links, with initial
conditions and the first four links fixed as in Figure 2. The target is placed at the median,
the top and bottom of the boxes correspond to the 75th and 25th percentiles, respectively,
the whiskers mark the most extreme data not considered outliers and the crosses mark
the outliers.
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max
∑

i

ui,

subject to:

tij ≤ Di ∗ lij,∀i,∀j;
tij ≤ lij ∗ Sj,∀i,∀j;∑

j

tij ≤ Di,∀i;∑
i

tij ≤ Sj,∀j;

ui = Di −
∑

j

tij, ∀i;{∑
j

[
lij ∗

(
Sj −

∑
i

tij

)]}
∗ ui = 0, ∀i.

Figure 4: Nonlinear program to compute the maximum unmet demand for an unsuccessful
graph.

tij ≤ Di ∗ lij, ∀i, ∀j;
tij ≤ lij ∗ Sj,∀i, ∀j;∑

j

tij = Di, ∀i;∑
i

tij ≤ Sj,∀j;

Figure 5: Linear program (constraint system) to determine the feasibility of a graph.
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